Causal Conceptions of Fairness and their Consequences with Sharad Goel – #586

Today we close out our ICML 2022 coverage joined by Sharad Goel, a professor of public policy at Harvard University. In our conversation with Sharad, we discuss his Outstanding Paper award winner Causal Conceptions of Fairness and their Consequences, which seeks to understand what it means to apply causality to the idea of fairness in ML. We explore the two broad classes of intent that have been conceptualized under the subfield of causal fairness and how they differ, the distinct ways causality is treated in economic and statistical contexts vs a computer science and algorithmic context, and why policies are created in the context of causal definitions are suboptimal broadly.

The complete show notes for this episode can be found at


Apple Podcasts:
Google Podcasts:
Full episodes playlist:

Subscribe to our Youtube Channel:

Podcast website:
Sign up for our newsletter:
Check out our blog:
Follow us on Twitter:

Follow us on Facebook:
Follow us on Instagram:

YouTube Source for this AI Video

AI video(s) you might be interested in …