CoRL 2020, Spotlight Talk 126: Learning Predictive Representations for Deformable Objects Using C…

“**Learning Predictive Representations for Deformable Objects Using Contrastive Estimation**
Wilson Yan (UC Berkeley)*; Ashwin Vangipuram (UC Berkeley); Pieter Abbeel (UC Berkeley); Lerrel Pinto ()

Using visual model-based learning for deformable object manipulation is challenging due to difficulties in learning plannable visual representations along with complex dynamic models. In this work, we propose a new learning framework that jointly optimizes both the visual representation model and the dynamics model using contrastive estimation. Using simulation data collected by randomly perturbing deformable objects on a table, we learn latent dynamics models for these objects in an offline fashion. Then, using the learned models, we use simple model-based planning to solve challenging deformable object manipulation tasks such as spreading ropes and cloths. Experimentally, we show substantial improvements in performance over standard model-based learning techniques across our rope and cloth manipulation suite. Finally, we transfer our visual manipulation policies trained on data purely collected in simulation to a real PR2 robot through domain randomization.

YouTube Source for this Robot AI Video

AI video(s) you might be interested in …