https://www.youtube.com/watch?v=_41n5Vrxcrg

ICML 2021: Bayesian Quadrature on Riemannian Data Manifolds

——————————————————————————–
Bayesian Quadrature on Riemannian Manifolds
Christian Fröhlich, Alexandra Gessner, Philipp Hennig, Bernhard Schölkopf, Georgios Arvanitidis
International Conference on Machine Learning (ICML) 2021
——————————————————————————–
► Paper: https://arxiv.org/abs/2102.06645
► Code: github.com/froec/BQonRDM.

Riemannian manifolds provide a principled way to model nonlinear geometric structure inherent in data. A Riemannian metric on said manifolds determines geometry-aware shortest paths and provides the means to define statistical models accordingly. However, these operations are typically computationally demanding. To ease this computational burden, we advocate probabilistic numerical methods for Riemannian statistics. In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws on Riemannian manifolds learned from data. In this task, each function evaluation relies on the solution of an expensive initial value problem. We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations and thus outperforms Monte Carlo methods on a wide range of integration problems. As a concrete application, we highlight the merits of adopting Riemannian geometry with our proposed framework on a nonlinear dataset from molecular dynamics.

► Find out more about our research at https://uni-tuebingen.de/en/134428.

Source of this “Tübingen Machine Learning” AI Video

AI video(s) you might be interested in …