Probabilistic Numeric CNNs with Roberto Bondesan – #482

Today we kick off our ICLR 2021 coverage joined by Roberto Bondesan, an AI Researcher at Qualcomm.

In our conversation with Roberto, we explore his paper Probabilistic Numeric Convolutional Neural Networks, which represents features as Gaussian processes, providing a probabilistic description of discretization error. We discuss some of the other work the team at Qualcomm presented at the conference, including a paper called Adaptive Neural Compression, as well as work on Gauge Equivariant Mesh CNNs. Finally, we briefly discuss quantum deep learning, and what excites Roberto and his team about the future of their research in combinatorial optimization.

The complete show notes for this episode can be found at https://twimlai.com/go/482

Subscribe:

Apple Podcasts:
https://tinyurl.com/twimlapplepodcast
Spotify:
https://tinyurl.com/twimlspotify
Google Podcasts:
https://podcasts.google.com/?feed=aHR0cHM6Ly90d2ltbGFpLmxpYnN5bi5jb20vcnNz
RSS:
https://twimlai.libsyn.com/rss
Full episodes playlist:

Subscribe to our Youtube Channel:
https://www.youtube.com/channel/UC7kjWIK1H8tfmFlzZO-wHMw?sub_confirmation=1

Podcast website:


Sign up for our newsletter:

Newsletter Sign-Up


Check out our blog:

Blog


Follow us on Twitter:

Follow us on Facebook:
https://facebook.com/twimlai
Follow us on Instagram:
https://instagram.com/twimlai

YouTube Source for this AI Video

AI video(s) you might be interested in …